Some of us carry on in education and take up careers in engineering where, among many of its individual disciplines, the triangle takes on a new importance. From mechanical to structural and even electronic engineering, the maths and science surrounding this simple three shaped side, is used to develop everything from buildings to cars and complex electronic circuits.

In vehicle engineering the triangle plays an important role in the early formula one cars as the prime shape of its space frame. The frame is made up of sections of tubular structures formed from triangles. These tetrahedral truss’s form some of the strongest man-made structures since the shape is rigid and light weight relative to the materials used in its construction.

The first true space frame chassis appeared in the 1930’s and, like many other aspects of vehicle design, mirrored ongoing work in the aerospace industry. After the second world war, sports car makers such as Maserati, Porsche and Jaguar launched vehicles with space frame technology. Small British sports outfits such as TVR and Lotus followed the trend and soon, space frame technology found its way into motor racing.

While the monocoque replaced the space frame by the end of the 60’s, triangle shapes still play a key role in F1 cars, with body panels and suspension components still carrying this distinctive shape right up to the present day.

That triangular journey to the present day, didn’t start in the 1930’s. The history of the triangle dates back thousands of years. Its history spans cultures, people and the globe on a journey of scientific development the is far greater than its humble shape would have you believe. We tend not to dwell too much on the origins of things that we see every day. You don’t imagine that triangles and the science around them would have a beginning.

The most basic principles of a triangle are wrapped up in Pythagorean Theorem. Named in honour of the great Greek mathematician Pythagoras. In simple terms it’s written as a2+b2=c2 or, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Of course, triangular structures long predate Pythagoras. As an example what is the primary shape of the Pyramids of Giza? There is a great deal of evidence that the understanding of Pythagorean theory existed long before the man himself, even if it wasn't as well recorded.

This is where the culture of maths enters the story. The principle use of maths in the earliest periods of its development was for the study of astronomy. One of the cultures at the forefront of this research was the Islamic faith. Far from being the stereotypical people that we read about today in various right-wing papers and see misrepresented on our TV screens in one way or another, while many people in Britain were daubing their faces with plant dyes and charging at other people with pointy sticks, Islamic scholars had created the foundations for the scientific principles that frustrate and confuse school children across the globe today.

The word Trigonometry derives from the Greek words Triangle and Measure. Without the mathematical functions that this science gives us engineers in the pitlane would not be able to calculate huge amounts of data related to the speed and performance of a range of systems on their cars.

Sumerian astronomers studied the ratios between angles and circles and later, Babylonians discovered links between these ratios and types of triangle. The Greco Egyptian astronomer Ptolemy created the first trigonometric tables known as a table of chords. These tables were used across the growing world for the next 1200 years until more accurate tables could be produced. By the 10th century Islamic scientists were using all 6 trigonometric functions and were applying them to all sorts of geometric problems. The Persian mathematician Nasir al-Din al-Tusi has been described as the creator of Trigonometry as its own mathematical discipline and the first person to move trig fully away from astronomy and to create the mathematical uses that we still apply to problems in the present day.

So, when you watch the Bahrain GP, keep in mind that our scientific understanding of the world and the science that we see applied in almost every aspect of the GP we are watching, from the cars to the construction methods used in the steel stands that the race goers are sat on, owe a huge debt to the work of Islamic scholars who applied themselves to the puzzles of the world, thousands of years before.

Enjoy the GP.